SpatiaLite In Class Exercise

SpataiLite comes with a standalone executable interface or GUI. This means you don't actually have to install the software, just double click the executable and run it.

Open the bin folder in the exercise folder. Double click on the spatialite-gui.exe to run it.

SpatiaLite Gui

[image:]

Create a new empty SQLite database.

File Creating a New (empty) SQLite DB. Call it abq.sqlite and put it in the exercise folder.
[image:]

The empty geodatabase is created.

We are going to load some shapefiles into our new db. There are several shapefiles from the City of Albuquerque in the exercise folder (bike trails, bus route, bus stops, netcurr and parks. SpatiaLite is going to ask for the spatial reference of our data as an EPSG code. These data (shapefiles) are in State Plane NM Central, NAD83 HARN feet. So what's the EPSG code equivalent to that? One source for EPSG codes is http://spatialreference.org/ . But we can find the SRID right from the SpatiaLite GUI.

In your SpatiaLite GUI find the Search SRID by Name button and type in New Mexico Central. There is a table in every SpatiaLite database with all the different spatial reference systems in it called spatial_ref_sys. This table is part of PROJ.4 which SpatiaLite uses. SpatiaLite generates and executes the SQL against this table for your query:

SELECT * FROM spatial_ref_sys
WHERE ref_sys_name LIKE '%New Mexico Central%'
ORDER BY srid.

This query should bring up about 7 records.

Write down the correct SRID, the one with ftUS as units.

NOTE: SRID is an Open Geospatial Consortium term. It is an OGC standard so you will see SRID mentioned a lot in other spatial databases, gis webservices and applications. Most of the common spatial reference systems have globally defined numbers. So 2903 always maps to NAD83(HARN)_StatePlane_New_Mexico_Central_Feet.

Click on the load shapefile button. Navigate to the exercise folder and select biketrails.shp. Take all the defaults but put the correct SRID in.

[image:]

You'll receive a statement telling you how many rows were inserted. You'll also see biketrails there as a new table. Repeat for the remaining shapefiles.

You've now imported 5 layers into SpatiaLite. The shapefiles total 28.1 mb. The sqlite database file is only 12.4 mb!

SpatiaLite has also added an entry to geometry_columns table for each layer you imported.
If you type:

SELECT * FROM geometry_columns

in the Query window and click the Execute SQL Statement icon to the right of the window, you'll see one record listed in the query result for each layer you imported. You'll see the geometry type, SRID etc.

SPATIAL INDEXES

Spatial indexes are important for speeding up the processing of most queries.

Netcurr is a big layer and having a spatial index (an index on the geometry column) will speed up rendering. Expand netcurr, right click on the Geometry column and select Build Spatial Index. You can build spatial indexes on your other layers if you'd like.

You can also build indexes on other fields. This can be useful for speeding up queries and joins based on that field.

Pros:
Speed up queries, joins, rendering

Cons:
Take up space
Can slow down updating of indexed fields. For example, if you have a field that is frequently updated and is frequently used for updating, you'll need to do benchmark tests to make sure the index does not cause more damage in update situations than it does for select query situations. In general if the number of records you are updating at any one time for a particular field is small, it's safe to put in an index.

Using spatial functions
SpatiaLite also has OGC spatial query functions built into it. If you've taken GIS 1001 you'll remember the first topology lab where you locate the bus stops which are further than 50 feet from a bus route. You could select those same stops with the following spatial sql statement. If you like you can copy and paste this into your sql window and execute it. Make sure to create spatial indices on both feature classes first.

SELECT busstops.StopID
FROM busstops
JOIN busroutes ON (distance(busstops.geometry,busroutes.geometry)>50)

A great resource for learning SQL with SpatiaLite can be found here:
http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/index.html

Viewing SpatiaLite data in QGIS

Open QGIS 1.7 Wroclaw (1.8 in the start menu).
Click on the Add SpatiaLite table(s) button

[image:]

[image:]

Click on New and navigate to your abq.sqlite file. Click Connect.

NOTE: You can execute a query on your data right here so that you bring in only certain records from a layer. We aren't using that functionality now but it's good to remember. For example, if you had a layer of all 50 US States but were only interested in NM you could enter the query NAME = 'New Mexico' and have the layer only consist of that one record.

[image:]

Select them all and add them to your map.

You'll notice very good performance with drawing. Generally speaking data pulled from a spatial database will perform more efficiently than flat files.

Click on the Add SpatiaLite table(s) button again and choose parks. Click the Build Query button. Put in a query to select Roosevelt Park. [image:]

Now you know how to set up a FOSS "geodatabase" using SpatiaLite!

SpatiaLite GIS - a minimalist GIS based on SpatiaLite
SpatiaLite also comes with a little executable GIS viewer. Go into your bin folder and double click the spatial-litegis.exe executable.

Once it opens connect to your abq database.
[image:]

[image:]

It will open with all the data layers in the db. It's exactly as advertised. Simple but not too robust. However, if you ever need a very simple redistributable GIS all you need is your database file and the Spatialite GIS executable. Two files, that is a minimalist GIS!

Developed by Kurt Menke, GISP, Bird's Eye View GIS www.BirdsEyeViewGIS.com
2
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

